文章编号: 0253-2239(2010)09-2562-06

二维周期物体自成像条件的扩展

严欣欣 张 磊 张文字 刘钦晓 余飞鸿

(浙江大学光电系现代光学仪器国家重点实验室,浙江杭州 310027)

摘要 基于标量衍射理论研究了二维周期物体自成像现象,进一步地扩展了二维周期物体的自成像条件。研究表明,只要两个方向周期长度的平方满足整数比,就存在相应的周期夹角满足自成像要求;另一方面,只要两个方向 周期夹角的余弦值的平方是有理数,理论上也就能找到比例合适的周期长度实现自成像。分析了同一个二维周期 物体用不同的周期长度及夹角组合来表示时,这些组合之间的数值关系。根据这些关系,给出了判断两个不同的 周期长度及夹角的组合是否等价的方法。最后用数值模拟验证了相关的理论分析。 关键词 衍射;二维周期物体;自成像;泰伯效应

中图分类号 O436 文献标识码 A doi: 10.3788/AOS20103009.2562

Extended Self-Imaging Conditions for Two-Dimensional Periodic Object

Yan Xinxin Zhang Lei Zhang Wenzi Liu Qinxiao Yu Feihong

(State Key Laboratory of Modern Optical Instrumentation, Optical Engineering Department, Zhejiang University, Hangzhou, Zhejiang 310027, China)

Abstract The self-imaging phenomenon of two-dimensional periodic object is studied based on the scalar diffraction theory, and the self-imaging conditions are extended. It is pointed out that if the square ratio of the two period lengths can be expressed as a quotient of two integers, there exist period angles between the two period directions that can achieve self-imaging. On the other hand, if the square of cosine of the period angle between the two period directions is a rational number, it is possible to find a proper proportion of the two period lengths to satisfy self-imaging. Furthermore, the numerical relation between equivalent combinations of period lengths and angles, which describe the same two-dimensional periodic object, is analyzed. The analysis can be utilized to determine whether two combinations of period lengths and angles are equivalent. The simulation result agrees well with the discussion. **Key words** diffraction; two-dimensional periodic object; self-imaging; Talbot effect

1 引 言

1836 年泰伯(Talbot)发现了周期性物体的自成像效应,即泰伯效应。随着近代光学的发展,人们 对泰伯效应进行了深入的研究^[1~9],并取得了广泛 的应用^[11~13]。在原理解释方面,主要有干涉理论^[1] 和标量衍射理论^[2~7]。干涉理论对简单周期物体泰 伯效应解释得比较好,但是对复杂周期性物体的分 析比较困难^[1]。相比较而言,标量衍射理论的解释 更具一般性^[2~7],分析方法也比较多,如分数傅里叶 变换^[3,4]、科纽曲线^[5]和光子学方法^[6]等。其中光子 学方法以光的波粒二象性观点对泰伯效应进行分 析,用概率波对光栅的泰伯效应进行了研究,得到了 与常规方法相同的分析结果^[6]。

在研究范围方面,在原来一维周期物体和整数 泰伯距离研究的基础上,二维周期物体(阵列)、分数 泰伯距离的成像规律也有了广泛的研究^[8,9]。其 中,曲伟娟等指出二维斜周期阵列的泰伯距离与正 交周期阵列的泰伯距离不同,分数泰伯像的成像规 律也不同^[8]。余飞鸿等指出了泰伯成像与平面周期 阵列的单元结构无关,仅由两方向的周期长度大小 以及夹角大小决定^[9],只要两个方向周期长度满足 整数比,就能获得一系列能实现自成像的角度。

大部分关于二维周期物体自成像的研究都是在 两个方向周期长度相等或者满足整数比的情况下讨

收稿日期: 2009-10-28; 收到修改稿日期: 2009-12-13

作者简介:严欣欣(1985-),男,硕士研究生,主要从事光学信息处理和数字图像处理等方面的研究。

E-mail: yanxinxin1985@gmail. com

导师简介:余飞鸿(1964-),男,教授,博士生导师,主要从事光学仪器方面的研究。E-mail: feihong@zju. edu. cn (通信联系人) 论的。本文运用标量衍射理论对二维周期物体的自 成像进行详细研究,发现两方向周期长度不满足整 数比,但两方向周期长度平方满足整数比的某些情 况下,也能够实现自成像。这一发现进一步扩展了 二维周期物体自成像条件^[9]。同时分析了同一个二 维周期物体用不同的周期长度及夹角组合来表示时 相互间的数值关系。根据这些关系,可以判断两个 不同的周期长度及夹角的组合是否是等价。最后数 值模拟验证了讨论的结果。

2 自成像条件的扩展

根据文献[9]中的思路,利用标量衍射理论,计 算出平面二维周期物体后的复振幅分布情况,然后 根据自成像的振幅分布与自成像物的振幅分布必须 一样的要求,导出实现自成像的条件,并对泰伯成像 条件进行了扩展。 图 1(a)所示是典型的泰伯效应示意图。用波 长为λ 的单色平行光照射满足一定条件的周期性透 射物体,则在物体后面会周期性地出现原周期物体 的像。图 1(b)所示的是二维周期物体的示意图, *AB* 方向和*AD* 方向的两组平行线交点是物体单胞 所在的位置,可表示为^[14]

$$f(x,y,0) = g(x,y) * \operatorname{comb}\left(\frac{x\sin\theta - y\cos\theta}{d_1}, \frac{x\sin\theta + y\cos\theta}{d_2}\right),$$
(1)

式中 f(x,y,0) 为二维周期物体的复振幅透射率, g(x,y) 为二维周期物体单胞复振幅透射率, comb(•) 为梳状函数, $d_1, d_2(d_1 \le d_2)$ 为二维周期 物体两个方向的周期长度, θ 为两个周期方向夹角 $2\theta(0 < 2\theta \le 90^\circ)$ 的一半,被x轴平分,* 代表卷积 运算。

图 1 (a) 泰伯效应示意图, (b) 二维周期物体示意图

Fig. 1 (a) Talbot effect, (b) two-dimensional periodic object

利用二维傅里叶变换的卷积性质、相似性以及 comb(•)函数的相似性、可分离性,可得(1)式表示的二维 平面周期物体复振幅透射率傅里叶频谱为

$$F(u,v,0) = \mathscr{F}[g(x,y)]\mathscr{F}\left[\cosh\left(\frac{x\sin\theta - y\cos\theta}{d_1}, \frac{x\sin\theta + y\cos\theta}{d_2}\right)\right] = \mathscr{F}[g(x,y)]\left|-\frac{d_1d_2}{2\sin\theta\cos\theta}\right| \cosh\left[\frac{d_1}{2}\left(\frac{u}{\sin\theta} - \frac{v}{\cos\theta}\right), \frac{d_2}{2}\left(\frac{u}{\sin\theta} + \frac{v}{\cos\theta}\right)\right] = \mathscr{F}[g(x,y)]\sum_{m=-\infty}^{\infty}\sum_{n=-\infty}^{\infty}\left\{\delta\left[u - \left(\frac{m}{d_1} - \frac{n}{d_2}\right)\sin\theta\right]\delta\left[v - \left(\frac{m}{d_1} + \frac{n}{d_2}\right)\cos\theta\right]\right\},$$
(2)

式中 $\mathscr{F}[\cdot]$ 表示傅里叶变换, $u \approx v$ 表示两个方向的频率。由标量衍射理论可知, 在菲涅耳衍射区内, 物体 后 z处 光波复振幅傅里叶频谱分布 F(u,v,z) 为物体复振幅透射率频谱 F(u,v,0) 与菲涅耳衍射传递函数 H(u,v,z) 之积,其中菲涅耳衍射传递函数为 $\exp(jkz)\exp[-j\pi\lambda z(u^2 + v^2)], \lambda$ 是入射单色光的波长。将(2) 式代入菲涅耳衍射公式, 并利用 δ 函数的乘法性质, 可得物体后 z处观察平面上的衍射频谱分布为

$$F(u,v,z) = H(u,v,z)F(u,v,0) = \exp(jkz)\exp\left[-j\pi\lambda z(u^2+v^2)\right] \times$$

$$\mathscr{F}[g(x,y)] \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \left\{ \delta \left[u - \left(\frac{m}{d_1} - \frac{n}{d_2} \right) \sin \theta \right] \delta \left[v - \left(\frac{m}{d_1} + \frac{n}{d_2} \right) \cos \theta \right] \right\} = \mathscr{F}[g(x,y)] \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \left\{ \delta \left[u - \left(\frac{m}{d_1} - \frac{n}{d_2} \right) \sin \theta \right] \delta \left[v - \left(\frac{m}{d_1} + \frac{n}{d_2} \right) \cos \theta \right] \right\}$$

$$\exp(jkz)\exp\left[-j\pi\lambda z\left(\frac{m^2}{d_1^2}+\frac{n^2}{d_2^2}-\frac{2mn\cos 2\theta}{d_1d_2}\right)\right]\right\}.$$
(3)

由二维傅里叶变换的可分离性以及乘法性质,对(3)式进行傅里叶反变换,可得在平面周期物体后 z 处的光波复振幅分布为

$$f(x,y,z) = g(x,y) * \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \left\{ \exp\left[j2\pi\left(\frac{m(x\sin\theta - y\cos\theta)}{d_1} + \frac{n(x\sin\theta + y\cos\theta)}{d_2}\right)\right] \times \exp\left(jkz\right) \exp\left[-j\pi\lambda z \left(\frac{m^2}{d_1^2} + \frac{n^2}{d_2^2} - \frac{2mn\cos2\theta}{d_1d_2}\right)\right] \right\}, \quad m,n \in \mathbb{Z}.$$
(4)

这个结果和文献[9]中的结果相一致。根据 comb(•)函数的傅里叶级数表示形式 comb(x/τ) = $\sum_{m=-\infty}^{+\infty} \exp(-j2\pi mx/\tau)$ 可以发现(1)式和(4)式形式相近,只是累加项中多了一个二次相位因子 $\exp(jkz)\exp\{-j\pi\lambda z [m^2/d_1^2 + n^2/d_2^2 - (2mn\cos 2\theta)/(d_1d_2)]\}$ 。为了实现自成像,必须使得该相位因子是 一个与 *m*,*n* 无关的常数,也就是要使

$$F(m,n) = \lambda z \left(\frac{m^2}{d_1^2} + \frac{n^2}{d_2^2} - \frac{2mn\cos 2\theta}{d_1 d_2}\right) = \frac{\lambda z}{d_1^2 k_2} \left(m^2 k_2 + n^2 k_1 - 2mn\cos 2\theta \sqrt{k_2 k_1}\right) = l, \quad m,n \in \mathbb{Z}$$
(5)

式中l表示偶数, k_1 , k_2 是使 $d_1^2k_2 = d_2^2k_1$ 成立的最小正整数。(5)式是一个多值方程,令

$$z = z_{\mathrm{T}} = \frac{2pd_1^2k_2}{\lambda}, \quad p \in Z^+$$
(6)

则(5) 式中的 F(m,n) 可以化成

 $F(m,n) = 2p(m^2k_2 + n^2k_1) - 4pmn\cos 2\theta \sqrt{k_1k_2}, \quad m,n \in \mathbb{Z}$ (7)

要使(5)式成立,必须使(7)式中的 $4pmn\cos 2\theta \sqrt{k_1k_2}$ 在m,n取任何整数时都为偶数,就是使 $2p\cos 2\theta \sqrt{k_1k_2}$ 为整数,即

$$2p\cos 2\theta \sqrt{k_1k_2} = q, \quad q \in Z, \ 0 \leq q < 2p \sqrt{k_1k_2}$$

$$(8)$$

$$\dot{a}(6) \ dashed{a}(8) \ dashed{a}(8) \ dashed{a}(6) \ dashed{a}(8) \ dashed{a}(6) \ dashed$$

$$f(x,y,z) = g(x,y) * \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \left\{ \exp\left[j2\pi\left(\frac{m(x\sin\theta - y\cos\theta)}{d_1} + \frac{n(x\sin\theta + y\cos\theta)}{d_2}\right)\right] \exp(jkz) \exp\left[-j2\pi(m^2k_2p + n^2k_1p - mnq)\right] \right\} = \exp(jkz)g(x,y) * \operatorname{comb}\left(\frac{x\sin\theta - y\cos\theta}{d_1}, \frac{x\sin\theta + y\cos\theta}{d_2}\right), \quad m, n, k_1, k_2, p, q \in \mathbb{Z}$$
(9)

这时就能实现二维周期物体的自成像。与文献[9]类 似,(6)式和(8)式分别是自成像距离条件和角度限制 条件;但是不同的是,本文并没有要求周期长度为整 数比,而只要求周期长度的平方满足整数比这样自成 像的条件就进一步放宽了,这也是本文的主要贡献。

在周期长度 d₁,d₂ 以及周期夹角 2θ 已知的情况下,p,q 互质时,(6)式所示的距离 z_T 就是能清晰成像的最小距离,也就是最小泰伯距离。值得注意的是,前面的结论是在菲涅耳衍射的前提下推导出来的,因此最小泰伯距离必须在菲涅耳衍射区内才有意义。表1所示的是两个方向的周期长度的比值可以表示成两个整数比时 p,q 取不同的互质整数得到的平面周期物体的夹角;表2 所示的是两个方向的周期长度不满足整数比,但是周期长度的平方

的比值可以表示成两个整数比时, *p*, *q*取不同的互质整数得到的平面周期物体的夹角。

从表1和表2中可以看出:

表中每一行中的所有角度代表了在周期长度的比例确定的情况下,能清晰成像的所有角度。
 例如,对于两个已有的光栅,相应的行就代表了它们能清晰自成像的夹角。

2)在 d²₁k₂都相等的情况下,每一列的所有角 度代表了在最小自成像距离相等时,不同周期长度 比例对应的夹角。

3)随着周期长度比例限制条件的放宽,能够实现自成像的周期夹角得到了扩展,如表2所示。理论上只要一个角度的余弦值的平方为有理数,就能找到相应的 d₁/d₂ 实现自成像。

4) 某些不同的周期长度、夹角组合所表示的二维 周期物体在几何排列上是等价的。例如表1中 d₁/d₂=1/1, p=2, q=3, 2θ=41.4°表示的二维周期物 体和表 2 中 $d_1/d_2 = 1/\sqrt{2}$, p = 1, $q = 1, 2\theta = 69$. 3°表示的 二维周期物体在不考虑缩放比例的情况下是等价的。

表1 周期长度的比值满足整数比时的平面周期物体的夹角

Table 1 Angles when the ratio of period lengths can be expressed as a quotient of integers

d_1/d_2	p 1	2	3	4	
1/1	q = 0, 1	1,3	1,2,4,5	1,3,5,7	
	2θ/(°)90.0,60.0	75.5,41.4	80.4,70.5,48.2,33.6	82.8,68.0,51.3,29.0	
1/2	q 0, 1, 2, 3	1,3,5,7	1,2,4,5,7,8,10,11	1,3,5,7,9,11,13,15	
	2θ/(°)90.0,75.5,60.0,41.4	82.8,68.0,51.3,29.0	85.2,80.4,70.5,65.4,	86.4,79.2,71.8,64.1,	
			54.3,48.2,33.6,23.6	55.8,46.6,35.7,20.4	
表 2 周期长度平方的比值满足整数比时的平面周期物体的夹角					
	Table 2 Angles when the ratio of square period lengths can be expressed as a quotient of integers				
d_1/d_2	p 1	2	3	4	
$1/\sqrt{2}$	q 0, 1, 2	1,3,5	1,2,4,5,7,8	1,3,5,7,9,11	
	2θ/(°) 90.0, 69.3, 45.0	79.8,58.0,27.9	83.2,76.4,61.9,	84.9,74.6,63.8,	
			53.9,34.4,19.5	51.8,37.3,13.5	
$1/\sqrt{3}$	q 0, 1, 2, 3	1,3,5	1,2,4,5,7,8,10	1,3,5,7,9,11,13	
	2θ/(°)90.0,73.2,54.7,30.0	81.7,64.3,43.8	84.5,78.9,67.4,61.2,	85.9,77.5,68.8,59.7,	
			47.7,39.7,15.8	49.5,37.5,20.2	
$\sqrt{2}/\sqrt{3}$	q 0, 1, 2, 3, 4	1,3,5,7,9	1,2,4,5,7,8,10,11,13,14 19		
					$2\theta/(^{\circ})$ 90.0, 78.2, 65.9, 52.2 35.3
	61.6,57.0,47.1,41.5,	62.7,55.9,48.4,40.1,			
	27.8,17.7	29.8,14.2			
	$1/\sqrt{5}$	q 0, 1, 2, 3, 4	1,3,5,7	1,2,4,5,7,8,10,11,13	1,3,5,7,9,11,13,15,17
$2\theta/(^{\circ})$ 90.0, 77.1, 63.4, 47.9 26.6		83.6,70.4,56.0,38.5	85.7,81.4,72.7,68.1,	86.8,80.3,73.8,67.0,	
			58.6,53.4,41.8,34.9,	59.8,52.1,43.4,33.0,	
			14.3	18.1	

3 排列等价性的讨论

同一个二维周期物体,可以表示成不同的周期 长度、周期夹角的组合,反映在图 2 中就是不同平行 线的组合(平行线交点为物体单物的位置)。如图 2 所示的由 AF 方向与 AD 方向平行线表示的二维周 期物体,同样可以由 AF 方向平行线与 DF 方向或 AE 方向的平行线相交得到,也可以由 AD 方向平 行线与 DF 方向或 AE 方向的平行线相交得到。

在这些等价组合中,周期长度、周期夹角之间满

足一定的数值关系。图 2 中如果能找出 AF 方向与 AD 方向平行线构成的最小平行四边形 ADEF 中 这几组等价组合间的数值关系,则在其他平行线组 合构成的最小平行四边形中,也可以得到相应等价 组合间的数值关系。在所有的等价组合中,有且只 有唯一的一个平行线组合,其所构成的最小平行四 边形的边长是所有等价组合中最短的。根据这个唯 一性以及等价的传递性,可以判断任意两个平行线 组合是否等价。下面讨论 AF,AD 方向平行线组合 与 AF,DF 方向平行线组合之间的等价关系,其他 的几组等价关系可以用相同的方法进行分析。设

$$\frac{d_1^2}{d_2^2} = \frac{AD^2}{AF^2} = \frac{L_1}{L_2}, \quad L_1, L_2 \in Z^+$$
(10)

$$rac{d_1^2}{d_3^2} = rac{DF^2}{AF^2} = rac{M_1}{M_2}, \quad M_1, M_2 \in Z^+$$
 (11)

式中 d_1 , d_2 , d_3 是图 2 中所标注的平行线间的距离, 即相应的周期长度; L_1 , L_2 , M_1 , M_2 是满足(10)式和(11)式的最小正整数。考虑使用 AF 方向平行线与 AD 方向平行线相交来表示二维周期物体的情况。 在 ΔAFD 中,由余弦定理求出 ∠DAF 的余弦值并 和(8) 式中表示的余弦值进行比较,可以得到

$$L_1 + L_2 - L_2 M_1 / M_2 = q_{\text{DAF}} / p_{\text{DAF}},$$
 (12)
 $p_{\text{DAF}} \in Z^+, q_{\text{DAF}} \in Z$

式中 p_{DAF} , q_{DAF} 是满足(12)式的最小整数。由于 M_1 , M_2 互质,所以

$$\begin{cases} p_{\text{DAF}} = \frac{M_2}{\gcd(L_2, M_2)}, \\ q_{\text{DAF}} = \frac{L_1 M_2 + L_2 M_2 - L_2 M_1}{\gcd(L_2, M_2)}, \end{cases}$$
(13)

式中 $gcd(L_2, M_2)$ 表示 L_2 和 M_2 的最大公约数。将 (13) 式代入(6) 式可得此时最小泰伯距离

$$z_{\text{DAF}} = \frac{2p_{\text{DAF}}d_1^2L_2}{\lambda} = \frac{2d_1^2L_2M_2}{\gcd(L_2,M_2)\lambda},$$
 (14)

同理,如果考虑AF方向平行线与DF方向平行线相 交来表示二维周期物体的情况,可以得到

$$\begin{cases} p_{BAC} = \frac{L_2}{\gcd(L_2, M_2)}, \\ q_{BAC} = \frac{L_2 M_1 + L_2 M_2 - L_1 M_2}{\gcd(L_2, M_2)}, \end{cases}$$
(15)

将(15)式代入(6)式可得

$$z_{\rm BAC} = \frac{2p_{\rm BAC}d_1^2 M_2}{\lambda} = \frac{2d_1^2 L_2 M_2}{\gcd(L_1, M_1)\lambda}.$$
 (16)

比较(14)式和(16)式可以发现,两种表示方法 的最小泰伯距离一样,和实际相符合。同时,(13)式 和(15)式表示了两组等价表示中 *p*,*q*的相互关系。 至此 *AF*,*AD*方向平行线组合与*AF*,*DF*方向平行 线组合之间的等价关系讨论完毕。同理,本节开头指 出的其他几组等价关系可以用类似的方法进行讨 论,这里不再赘述。

4 模拟结果

为了验证周期长度比例不满足整数比,但是周期长度平方满足整数比的情况下也能够实现自成像,对周期长度比例为 $1/\sqrt{2}$ 和 $1/\sqrt{3}$ 的情况下正交与非正交的四组情况进行了模拟。模拟结果如图3所示。图3中的每一行代表一种二维周期物体及其在不同位置的成像。第一列表示二维周期物体,其他6列中列的位置代表了像面的位置,其中 z_T 是(4)式中所示的最小泰伯距离。

从图 3 中可以看出,在最小泰伯距离 $z=z_T$ 处 所成的像和 z=0 处的像面完全相同,而在其他 $z=z_T/6, z_T/6, z_T/5, z_T/4, z_T/3, z_T/2$ 五个位置所成像相对 于原物体都发生了平移、倍频或叠加。这验证了本 文理论计算出的最小泰伯距离的正确性。

图 3 中的第一行是 $d_1/d_2 = 1/\sqrt{2}$, $2\theta = 90^{\circ}$ 时的 结果,在 1/2 泰伯距离处所成的像相对于原物体在 竖直方向上发生了半个周期的平移,而在水平方向 没有发生平移。图 3 中的第三行是 $d_1/d_2 = 1/\sqrt{3}$, $2\theta = 90^{\circ}$ 时的成像结果。同样是正交的二维周期物 体,其在 1/2 泰伯距离处所成的像相对于原物体在 水平和竖直方向上都发生了半个周期的平移。可见 周期长度比例不同,正交二维周期物体的分数泰伯 像的性质也不同。

图 3 中的第二、四行分别是 $d_1/d_2 = 1/\sqrt{2}, 2\theta =$ 69.3°和 $d_1/d_2 = 1/\sqrt{3}, 2\theta = 64.3$ °时的结果。在 1/2 泰伯距离处所成的像相对于原物体在水平和竖直方 向上没有发生平移,但是都发生了二倍频。可见正交 和斜交二维周期物体分数泰伯像的性质有较大不同。

图 3 周期长度平方满足整数比时的二维周期物体的泰伯像

Fig. 3 Talbot image of periodic object when the square ratio of period lengths can be expressed as a quotient of integers

5 结 论

研究了二维周期物体的自成像条件,得出只要 周期的平方满足整数比,就存在可成清晰泰伯像的 夹角;同样只要夹角余弦的平方是有理数,理论上也 就能找到合适的周期比例。分析了同一个二维周期 物体用不同的周期长度及夹角组合来表示时,这些 组合之间的数值关系。根据这些关系,可以判断两 个不同的周期长度及夹角的组合是否是等价的。模 拟结果证明了给出的二维周期物体自成像条件的正 确性。

参考文献

- 1 Liang Quanting. Plane wave interference theory of Talbot effect [J]. J. Guangzhou University (Natural Science Edition), 2002, 1(2): 13~15
- 梁铨廷. Talbot 效应的平面波干涉理论[J]. 广州大学学报(自然 科学版),2002,1(2):13~15
- 2 T. Winthrop, C. R. Worthington. Theory of Fresnel images: I. Plane periodic objects in monochromatic light[J]. J. Opt. Soc. Am. A, 1965, 55(4): 373~380
- 3 Chen Wenjing, Su Xianyu. Fractional Fourier transform digital algorithm based on angular spectrum theory [J]. J. Optoelectronics • Laser, 2002, 13(4): 401~404 陈文静,苏显渝. 基于角谱分析的分数傅里叶变换数值模拟算 法[J]. 光电子 • 激光, 2002, 13(4): 401~404
- 4 Mykhailo V. Shovgenyuk, Yuri M. Kozlovskii. Self-images of periodic phase elements in the fractional Fourier transform domain[C]. SPIE, 2006, 6027: 60270E
- 5 Lou Zhimei. A new explanation of Talbot effect[J]. J. Qinghai Normal University (Natural Science Edition), 2001, (1): 23~ 26

楼智美. Talbot 效应的新解释法[J]. 青海师范大学学报(自然科学版), 2001, (1): 23~26

6 Zhang Chengyi, Tao Chunkan. A study of Talbot effect based on photonic theory [J]. Laser & Optoelectronics Progress, 2006, **43**(5): 63~66

张成义,陶纯堪. 光栅 Talbot 效应的光子学研究[J]. 激光与光 电子学进展,2006,**43**(5):63~66

- 7 Zhou Tongjun, Teng Shuyun. Influence of the size of the grating on Talbot effect[J]. J. Shandong Normal University (Natural Science Edition), 2007, 22(3): 50~51 周同军, 滕树云. 光栅尺寸对光栅泰伯效应的影响[J]. 山东师 范大学学报(自然科学版), 2007, 22(3): 50~51
- 8 Qu Weijuan, Yan Aimin, Liu Liren *et al.*. Fractional Talbot effect of 2D skewed periodic array[J]. *Chinese J. Lasers*, 2006, 33(3): 356~360
- 曲伟娟, 闫爱民, 刘立人等.二维斜周期阵列的分数泰伯效 应[J].中国激光, 2006, **33**(3): 356~360
- 9 Yu Feihong, Liang Yinzhong, Li Zhengmin et al.. Talbot effect of the plane-periodic object [J]. J. Zhejiang University, 1993, 27(5): 634~639

余飞鸿,梁荫中,李正民等. 平面周期物体的 Talbot 效应[J]. 浙江大学学报, 1993, **27**(5): 634~639

- 10 Chen Ying, Yang Kuntao. Research on the check of light collimation based on Talbot effect[J]. Optics & Optoelectronic Technology, 2005, 3(2): 37~40
 陈 颖,杨坤涛. 基于 Talbot 效应的光准直测量方法研究[J]. 光学与光电技术, 2005, 3(2): 37~40
- Hou Changlun, Xu Jianfeng, Bai jian *et al.*. Sub-wavefront slope measurement based on Talbot effect moiré fringe technology[J]. *Opto-Electronic Engineering*, 2007, **34**(11): 61~64 侯昌伦,徐建锋,白 剑等. 采用 Talbot 效应莫尔条纹的子波 面斜率测量[J]. 光电工程, 2007, **34**(11): 61~64
- 12 Pan Zhengqing, Ye Qing, Cai Haiwen *et al.*. Millimeter-wave modulated optical pulse generated by pulse repetition rate multiplication and temporal Talbot effect[J]. *Chin. Opt. Lett.*, 2008, 6(9): 634~637
- 13 Tan Qiaofeng, Zhang Yan, Jin Guofan. High-efficiency spatial color separation method based on fractional Talbot effect [J]. *Chin. Opt. Lett.*, 2009, 7(11): 975~977
- 14 Jack D. Gaskill. Linear Systems, Fourier Transforms, and Optics[M]. Feng Kaiyin transl., Beijing: People's Education Press, 1981. 5~98
 - J. D. 加斯基尔. 线性系统·傅里叶变换·光学[M]. 封开印 译, 北京:人民教育出版社,1981. 5~98